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Abstract

The effects of viscoelastic behavior of the interphase on the dynamic effective properties of composite materials

reinforced by the distributed coated spherical inclusions are studied in this paper. The effective wave numbers of

composites are predicted from the coherent plane wave equation which is related to the forward scattering amplitudes

of an individual inclusion. A thin homogeneous viscoelastic interphase between the inclusion and the matrix is used to

model the more realistic bonding state between them. Because the forward scattering amplitudes are closely related to

the interphase, the interphase thus can affect the effective properties of composites significantly. The numerical simu-

lation is given for SiC–Al composites and it is shown that the effective wave numbers and the effective elastic moduli of

the composites are affected by the viscosity of the interphase noticeably. The attenuation of the effective waves is related

to both the multiple scattering amongst reinforced particles and the material dissipation of the viscoelastic interphase.

However, the dissipation effect of the interphase dominates in a range of relatively low frequency, whereas the effect of

multiple scattering dominates in a range of relatively high frequency.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The determination of the effective propagation constants of the waves propagating through composite

materials has been a subject which attracted a considerable attention in the past several decades (e.g. Foldy,

1945; Lax, 1952; Varadan et al., 1985; Data et al., 1988; Shindo et al., 1995; Kanaun, 2000). Foldy (1945)

studied early the effective wave number of the scalar wave propagating through the inhomogeneous

medium with distributed particles based on the multiple scattering theory. In this theory a set of equations
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in hierarchy, each containing more statistical information than those preceding, is involved. Truncating

these equations to obtain an approximate solution usually resorts to the well-known ‘‘quasi-crystalline

approximation’’ proposed by Lax (1952). Later, Bose and Mal (1973) and Varadan et al. (1985) extended

the multiple scattering theory of the scalar wave to the elastic waves and enhanced the theory by intro-
ducing the more realistic pair-correlation function to describe the interaction between two particles accu-

rately. On the other hand, the interaction amongst particles can be described approximately by assuming

that each particle is embedied in an effective medium, which is usually called as the effective medium

approach and was employed by Berryman (1980), Sabina and Willis (1988), Yang and Mal (1994), Kanaun

(2000) and others. The multiple scattering theory and the effective medium approach are based on different

assumptions to simplify calculations, and thus, generally speaking, will give different results when applied

to a given composite medium.

In the composites reinforced by fibers or particles, it is often the case that there is an imperfect interface
between the matrix and the fiber or particle induced by processing conditions. The nondestructive char-

acterizing of interface properties by ultrasonic waves is crucial for the safety service of structure material.

Consequently, it is desirable to relate the effective propagation constants (the phase velocity and the

attenuation) to the properties of the imperfect interface. Mal and Bose (1974) studied early the imperfect

interface where only the tangential displacement jumps were considered. This means the slip may occur at

the interface if a load is applied on it. Data et al. (1988) studied the imperfect interface that both tangential

and normal displacements jumps exist. In both studies above-mentioned it is assumed that the tractions are

continuous across the interface. It may be noticed that these approximate boundary conditions ignore the
inertial and the curvature effects. The imperfect interface with both displacement and stress jumps, as an

improved model, was studied by Olsson et al. (1990) and Hashin (2002). Further, the graded interfacial

layer in the fiber- or particle-reinforced composites was discussed by Shindo et al. (1995) and Sato and

Shindo (2001).

In the present work the interphase is modeled as a thin shell with finite thickness and is assumed to be

viscoelastic. An interphase of such nature might be introduced to provide relaxation and damping char-

acteristics to an otherwise elastic brittle composite. The effects of viscoelastic interphase on the effective

properties of composites were studied by Hashin (1991) based on the correspondence principle. In his
investigation, the Maxwell model of viscoelastic material is used. The effects of viscoelastic matrix and

viscoelastic particle were studied recently by Biwa et al. (2002) based on the independent scattering/

absorption analysis, but the complex moduli of the viscoelastic material were approximated as frequency-

independent constants. It is our purpose to discuss the effects of the viscoelastic interphase on the effective

propagation constants and the dynamic effective moduli of such composites. And the more general model

for a viscoelastic material, i.e. standard solid model, will be used in our study. The outline of the paper is as

follows: In Section 2, the scattering problem of a single inclusion embedded in an elastic matrix with the

viscoelastic interphase separating the inclusion with the matrix is studied and the forward scattering
amplitudes are formulated. In Section 3, an equation to predict the effective wave number by using the

forward scattering amplitudes of displacement vector is formulated. And some other equations to predict

the effective wave number by using the forward scattering amplitudes of wave potential are discussed. In

Section 4, the effects of the viscoelastic interphase on the effective properties of composites are studied and

the numerical calculations are carried out for SiC–Al composites. Finally, some conclusions are given in

Section 5.
2. Scattered waves by a coated spherical particle embedded in a elastic matrix

Consider a spherical inclusion of radius a embedded in an elastic matrix. The lam’e constants and the
mass densities of the inclusion and the matrix are denoted by ðk1; l1; q1Þ and ðk0; l0; q0Þ, respectively. We
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assume that the inclusion is separated from the matrix by a thin viscoelastic interphase of uniform thickness

h. The frequency-dependent lam’e constants and the mass densities of the viscoelastic interphase are

denoted by ðkv2ðxÞ; lv2ðxÞ; q2Þ. The geometry is depicted in Fig. 1, where ðx; y; zÞ is the right-handed

Cartesian coordinate system with the origin at the center of the spherical inclusion and ðr; h;/Þ is the
corresponding spherical polar coordinate. The time harmonic plane longitudinal and shear waves, P and S
waves, with circular frequency x are assumed to propagate through the matrix. Let the z-axis is the

propagation direction of the incident waves. Then, the incident waves may be expressed by the displace-

ment vector
ui ¼ aeiðkp0z�xtÞ þ beiðks0z�xtÞ; ð1Þ

where a ¼ aez and b ¼ bex are the polarization vectors of incident P and S waves, respectively. ez and ex are

unit coordinate vectors. kp0 and ks0 are the wave numbers of the incident P and S waves, respectively. When

the incident waves impinge the coated elastic inclusion, the scattered waves outside the coated inclusion, the

refracted waves inside the inclusion and the transmitted waves in the interphase are induced. It is no doubt

that the existence of the interphase can change the scattered waves and thus affect the effective waves
propagating through the composites.

In order to evaluate the scattered wave field in the matrix, it is necessary to take into account the

transmitted waves in the interphase and the continuous conditions of displacements and tractions across

the interfaces at both sides of the interphase. It is noted that the wave numbers of waves in the elastic

inclusion and matrix are real-valued and the wave numbers of waves propagating through the interphase

are complex-valued due to the frequency-dependent complex moduli of the viscoelastic interphase. The

complex-value wave numbers mean the attenuation of waves, in other word, the energy carried by waves

is partly absorbed by the viscoelastic interphase. This mechanism of the viscoelastic interphase is expected
to improve the mechanical properties of brittle composites. The constitutive equations of an isotropic

viscoelastic material can be expressed generally in the Stieltjes integral form
sijðtÞ ¼
Z t

�1
2GðsÞ _eijðt � sÞds; ð2aÞ

rkkðtÞ ¼
Z t

�1
3KðsÞ_ekkðt � sÞds: ð2bÞ
Fig. 1. A coated spherical inclusion embedded in an elastic matrix.
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In the harmonic cases, it leads to
�sijðxÞ ¼ 2GvðxÞ�eijðxÞ; ð3aÞ

�rkkðxÞ ¼ 3KvðxÞ�ekkðxÞ; ð3bÞ

where eij, rij, eij, sij are the strain, the stress, the deviatoric strain and the deviatoric stress, respectively. And
�eij, �rij, �eij, �sij are their corresponding Fourier transformations, respectively, i.e.�f ðxÞ ¼ F ðf ðtÞÞ. The

shear and bulk moduli, GvðxÞ and KvðxÞ, are related to the shear and bulk relaxation functions, GðtÞ and
KðtÞ, by
GvðxÞ ¼ ixF ðGðtÞÞ; ð4aÞ

KvðxÞ ¼ ixF ðKðtÞÞ: ð4bÞ
The equations of wave motion in a homogeneous elastic or viscoelastic medium are expressed as
k�2p rr � u � k�2s r	r	 u þ u ¼ 0; ð5Þ
where uðx; y; z; tÞ is the time harmonic displacement vector. For convenience, the time harmonic factor e�ixt

is omitted in the following discussion but understood. kp ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 2lÞ=q

p
and ks ¼ x=

ffiffiffiffiffiffiffiffi
l=q

p
are the wave

numbers (real- or complex-value) of the longitudinal and the shear waves, respectively. r is the gradient

operator. It is known that the general form of the solution of Eq. (5) can be expressed as
u ¼ rU þr	 ðWrÞer þr	r	 ðPrÞer; ð6Þ

where the scalar potential U, W and P are the solutions of the scalar Helmholtz equation
ðr2 þ k2ÞðU;W;PÞ ¼ 0; ð7Þ

(where r2 is the Laplacian operator) and can be expressed in a series form
ðU;W;PÞ ¼
X1
n¼0

X
n
m¼0

CnmZqnðkrÞPmn ðcos hÞeim/ ðq ¼ 1 or 3Þ; ð8Þ
where Cnm is the expansion coefficient. Pmn ðcos hÞ is the associated Legendre function and the symbol ZqnðkrÞ
stands for the spherical Bessel function jnðkrÞ for q ¼ 1 and the spherical Hankel function hð1Þn ðkrÞ for q ¼ 3.

In order to meet the radial conditions at infinity and to keep finite values of the displacements at the center

of the inclusion, the potentials of the scattered, transmitted and refracted waves can be expressed as
Us ¼
X1
n¼0

X
n
m¼0

Asmnh
ð1Þ
n ðkprÞPmn ðcos hÞeim/; ð9aÞ

Ws ¼
X1
n¼0

X
n
m¼0

Bsmnh
ð1Þ
n ðksrÞPmn ðcos hÞeim/; ð9bÞ

Ps ¼
X1
n¼0

X
n
m¼0

Csmnh
ð1Þ
n ðksrÞPmn ðcos hÞeim/; ð9cÞ

Ut ¼
X1
n¼0

X
n
m¼0

½AtmnjnðkprÞPmn ðcos hÞ þ Atmnh
ð1Þ
n ðkprÞPmn ðcos hÞ�eim/; ð10aÞ
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Wt ¼
X1
n¼0

X
n
m¼0

½BtmnjnðksrÞPmn ðcos hÞ þ Btmnh
ð1Þ
n ðksrÞPmn ðcos hÞ�eim/; ð10bÞ

Pt ¼
X1
n¼0

X
n
m¼0

½CtmnjnðksrÞPmn ðcos hÞ þ Ctmnh
ð1Þ
n ðksrÞPmn ðcos hÞ�eim/; ð10cÞ

Ur ¼
X1
n¼0

X
n
m¼0

ArmnjnðkprÞPmn ðcos hÞeim/; ð11aÞ

Wr ¼
X1
n¼0

X
n
m¼0

BrmnjnðksrÞPmn ðcos hÞeim/; ð11bÞ

Pr ¼
X1
n¼0

X
n
m¼0

Cr
mnjnðksrÞPmn ðcos hÞeim/; ð11cÞ
where Aa
n, B

a
n, C

a
n , A

a

n, B
a
n and C

a

n (a ¼ s; r; t for the scattered, refracted and transmitted waves, respectively)

are the expansion coefficients to be determined from the boundary conditions. The boundary conditions,

namely, displacements and tractions are continuous across the interfaces at both sides of the interphase,

may be written as
urbðaÞ ¼ utbðaÞ; uibðaþ hÞ þ usbðaþ hÞ ¼ utbðaþ hÞ ðb ¼ r; h;/Þ; ð12aÞ

trbðaÞ ¼ ttbðaÞ; tibðaþ hÞ þ tsbðaþ hÞ ¼ ttbðaþ hÞ ðb ¼ r; h;/Þ: ð12bÞ
where the tractions vector can be obtained by
t ¼ r � n; ð13Þ

r ¼ kðr � uÞI þ lðru þ urÞ: ð14Þ
In Eq. (13) and (14), n is the outward normal vector of the interfaces and I is the second-rank identity

tensor. In order to determine the unknown expansion constants, it is convenient to extend the incident

plane waves in terms of the spherical wave functions too
Ui ¼ a
ikp0

eikp0z ¼ a
ikp0

X1
n¼0

X
n
m¼0

ð2nþ 1Þindm0jnðkp0rÞPmn ðcos hÞeim/

¼
X1
n¼0

X
n
m¼0

Aimnjnðkp0rÞPnmðcos hÞeim/; ð15aÞ

Wi ¼ b
iks0

X1
n¼0

X
n
m¼0

2nþ 1

2nðnþ 1Þ ½dm;1 þ nðnþ 1Þdm;�1�in�1jnðks0rÞPmn ðcos hÞeim/

¼
X1
n¼0

X
n
m¼0

Bimnjnðks0rÞPnmðcos hÞeim/; ð15bÞ
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Pi ¼ b

ðiks0Þ2
X1
n¼0

X
n
m¼0

2nþ 1

2nðnþ 1Þ ½dm;1 � nðnþ 1Þdm;�1�in�1jnðks0rÞPmn ðcos hÞeim/

¼
X1
n¼0

X
n
m¼0

Cimnjnðks0rÞPnmðcos hÞeim/: ð15cÞ
The solution of Eq. (12) can be expressed formally
ðAsmn;Bsmn;Cs
mn;A

t
mn;B

t
mn;C

t
mn;A

t
mn;B

t
mn;C

t
mn;A

r
mn;B

r
mn;C

r
mnÞ

r ¼ T � ðAimn;Bimn;CimnÞ
t
: ð16Þ
where T is the so-called T -matrix which is dependent upon the properties of the matrix, the inclusion and

the interphase between them. Furthermore, with the introduction of the scattering operator Ts, the scat-

tered wave can be related to the incident wave by
us ¼ Tsui: ð17Þ

After applying the asymptotic expression of the radial function hð1Þn ðkrÞ
hð1Þn ðkrÞ 
 1

kr
ei½kr�

1
2
ðnþ1Þp� þ o

1

r

� �
when r ! 1; ð18Þ
the displacement of scattered wave in the far-field can be expressed asymptotically
ur 

1

r
eikp0r

X1
n¼0

X
n
m¼0

iAsmne
�i1

2
ðnþ1ÞpPmn ðcos hÞeim/ þ o

1

r

� �
¼ Frðh;/Þ

r
eikp0r þ o

1

r

� �
; ð19aÞ

uh 

1

r
eiks0r

X1
n¼0

X
n
m¼0

ie�i
1
2
ðnþ1Þp Bsmn

m
ks0 sin h

Pmn ðcos hÞ
�

þ Cs
mn

d
dh
Pmn ðcos hÞ

�
eim/ þ o

1

r

� �

¼ Fhðh;/Þ
r

eiks0r þ o
1

r

� �
; ð19bÞ

u/ 
 � 1

r
eiks0r

X1
n¼0

X
n
m¼0

Bmns
ks0

d
dh
Pmn ðcos hÞ

�
þ m
sin h

CsmnP
m
n ðcos hÞ

�
e�i

1
2
ðnþ1Þpeim/ þ o

1

r

� �

¼ Fhðh;/Þ
r

eiks0r þ o
1

r

� �
; ð19cÞ
where Frðh;/Þ, Fhðh;/Þ and F/ðh;/Þ are called the far-field scattered amplitudes of displacement compo-

nents. Furthermore, we define Fp ¼ Frðh;/Þer and Fs ¼ Fhðh;/Þeh þ F/ðh;/Þe/ (er, eh and e/ is unit polar

coordinate vectors) as the far-field scattered amplitude vectors for the scattered longitudinal and shear

waves, respectively. It is noted that the far-field scattered amplitudes are dependent on the azimuth angles

ðh;/Þ. The far-field scattered amplitudes at two specific azimuthal angles, h ¼ 0 and h ¼ p, are of special
interest, and are called the forward and the backward scattering amplitudes, respectively.
Frð0;/Þ ¼
X1
n¼0

ð�iÞnAs0n; ð20aÞ

Fhð0;/Þ ¼
X1
n¼1

ð�iÞn

2

nðnþ 1Þ
ks0

Bs1ne
i/

�
þ 1

ks0
Bs�1ne

�i/
�
; ð20bÞ
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F/ð0;/Þ ¼
X1
n¼1

ið�iÞn

2
½nðnþ 1ÞCs1nei/ þ Cs

�1ne
�i/�; ð20cÞ

Frðp;/Þ ¼
X1
n¼0

inAs0n; ð21aÞ

Fhðp;/Þ ¼
X1
n¼1

�in

2

nðnþ 1Þ
ks0

Bs1ne
i/

�
þ 1

ks0
Bs�1ne

�i/
�
; ð21bÞ

F/ðp;/Þ ¼
X1
n¼1

�inþ1

2
½nðnþ 1ÞCs1nei/ þ Cs

�1ne
�i/�: ð21cÞ
3. Dynamic effective properties of the particle-reinforced composites

We now consider a composite material with N inclusions randomly distributed in the matrix. If their

positions of these inclusions, denoted by the random variables ðr1; r2; . . . ; rNÞ, are given, we shall say that we
have a particular configuration of these scatterers. The joint probabilities distribution, denoted by

pðr1; r2; . . . ; rN Þ, represents the probability of finding these scatterers in the above configuration. In light of

the chain rule of the conditional probabilities, the distribution function can be written as
pðr1; r2; . . . ; rN Þ ¼ pðriÞpðr1; r2; . . . ; ri�1; riþ1; . . . ; rN jriÞ ¼ pðriÞpðr1; r2; . . . 0 . . . ; rN jriÞ; ð22Þ

where the vertical lines in the arguments stands for the conditional probability distribution with the

scatterer positioned at ri hold fixed. Symbol ‘‘0’’ means the absence of one variable. Due to the indistin-

guishability of inclusions, the distribution function pðr1; r2; . . . ; rNÞ is symmetric in its arguments. If the

composite medium is statistically uniform within a volume V , then, the position of each inclusion is equally
probable within the volume V , namely, its distribution is uniform with density
pðriÞ ¼
1

V
ði ¼ 1; 2; 3; . . . ;NÞ: ð23Þ
The probability of finding a particular inclusion in the micro volume element dVi at ri is
pðriÞdVi ¼ dVi

Z
� � �

Z
dV1 � � � 0 � � � dVNpðr1; . . . ; rN Þ: ð24Þ
Since each of the N inclusions has equal likelihood for occupying dVi , the number density nðriÞ of inclusions
at ri is then given by
nðriÞ ¼ NpðriÞ; ð25Þ

and is related to the volume concentration c by n ¼ 3c=ð4pa3Þ. The configurational average of a random

function f ðr; r1; . . . ; rN Þ is defined by
hf ðr; r1; . . . ; rN Þi ¼
Z

� � �
Z

dV1 � � � dVNpðr1; . . . ; rN Þf ðr; r1; . . . ; rN Þ; ð26Þ
and the partial configurational average with one inclusion held fixed is defined by
hf ðrjri; r1; . . . 0 . . . ; rN Þi ¼
Z

� � �
Z

dV1 . . . 0 . . . dVNpðr1; . . . 0 . . . ; rN jriÞf ðrjri; r1; . . . 0 . . . ; rN Þ; ð27Þ
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where the first coordinate r indicates the field point of evaluation, and the (r1; . . . ; rN ) indicates the

dependence of the random function on the specific configuration chosen.

The total field at any point outside all inclusions can be given in the multiple scattering form
uðr; r1; r2; . . . ; rNÞ ¼ uiðrÞ þ
XN
k¼1

TsðrkÞuiðrÞ þ
XN
m¼1

TsðrmÞ
XN

k¼1;k 6¼m
TsðrkÞuiðrÞ þ � � � ; ð28Þ
where the single summation denotes the primary scattered terms, the double summation the secondary

terms and so on. The primary scattering is due to the incident waves alone, and the second scattering

represents the rescattering of the primary scattered waves, etc. The multiple scattering theory takes into

account the interaction among the distributed inclusions accurately. However, it is difficulty to deal with in
order to predict the effective properties. Here, we use the effective field approximation to describe

approximately the interaction among the distributed inclusions. In this approximation it is assumed that

each inclusion be excited by an effective exciting field ue Then Eq. (28) can be approximately replaced by
uðr; r1; r2; . . . ; rNÞ ¼ uiðrÞ þ
XN
k¼1

TsðrkÞueðrjrk; r1; . . . 0 . . . ; rN Þ: ð29Þ
After performing configurational average over Eq. (29), we obtain
huðr; r1; . . . ; rNÞi ¼ uiðrÞ þ
Z
nðrkÞTsðrkÞhueðrjrk; r1; . . . 0 . . . ; rNÞidVk: ð30Þ
The quantity hueðrjrk; r1; . . . 0 . . . ; rN Þi represents the exciting field acting on the kth scatterer averaged over

all possible configurations of the other scatterers. Therefore it is in fact the counterpart of the averaged

total field with one inclusion absent. The averaged total field with N inclusions involved, huðr; r1; . . . ; rN Þi,
would differ from the averaged total field with one less inclusion involved only by terms of order 1=N . As
the number of inclusions increases, we may make the self-consistent approximation
huekðrjrk; r1; . . . 0 . . . ; rNÞi � huðr; r1; . . . ; rNÞi: ð31Þ

This approximation was proposed first by Foldy (1945) and later modified by Lax (1952) by introducing a

correction parameter. Then, we obtain the integral equation.
huðr; r1; . . . ; rNÞi ¼ uiðrÞ þ
Z
nðrkÞTsðrkÞhuðr; r1; . . . ; rN ÞidVk

¼ uiðrÞ þ
Z
nðrkÞGT

sðrkÞdVkhuðr; r1; . . . ; rN Þi: ð32Þ
This equation can be rewritten in a compact form
hui ¼ ui þ nGT
shui; ð33Þ
where Ts is fractionalized by Ts ¼ GT
s
and T

s
is still called the scattering operator. G is the Green function

tensor of the homogeneous and isotropic host medium, which satisfies
ðk0 þ l0Þrðr � GÞ þ l0r2G � q0x
2G þ Idðr � r0Þ ¼ 0; ð34Þ
or in an operator form
L0G þ I ¼ 0; ð35Þ

where the operator L0 is written as
L0ijðkÞ ¼ ðk0 þ l0Þkikj þ ðl0k
2 � q0x

2Þdij: ð36Þ
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For a homogeneous and isotropic medium, the equation of motion is expressed as
L0u ¼ 0; ð37Þ
and the dispersion relation can be obtained from
u�L0u ¼ 0: ð38Þ
For the longitudinal and shear waves, Eq. (38) leads to
k2p0 ¼
q0x

2

k0 þ 2l0

; ð39aÞ

k2s0 ¼
q0x

2

l0

; ð39bÞ
where kp0 and ks0 are the wave numbers of P and S waves propagating through the homogeneous medium,

respectively. After performing wave operator L0 on both sides of Eq. (33), we obtain the dispersion rela-
tions of the effective longitudinal and shear waves propagating through the composite material
k2p� ¼ k2p0 þ ðk0 þ 2l0Þ
�1nT

s
ijaiaj; ð40aÞ

k2s� ¼ k2s0 þ l�1
0 nT

s
ijbibj; ð40bÞ
where kp� and ks� are the effective wave numbers of P and S waves through the composite material,

respectively. a and b are polarization vectors of P and S waves, respectively. It was proved by Devaney

(1980) that the scattering operator T
s
of a single inclusion bears a simple relation to the far-field scattering

amplitude vectors of the waves scattered by the inclusion
T
s
ijaiaj ¼

4pq0x
2

k2p0
½Fpðkp� ; ks� Þ � a�

		
h¼0; ð41aÞ

T
s
ijbibj ¼

4pq0x
2

k2s0
½Fsðkp� ; ks� Þ � b�jh¼0; ð41bÞ
where Fpðkp� ; ks� Þ and Fsðkp� ; ks� Þ are the far-field scattering amplitude vectors of P and S waves, respectively.
By inserting Eq. (41) into Eq. (40), we obtain the desired dispersion relations of the averaged waves in term

of the far-field scattering amplitude vectors of a single inclusion.
k2p� ¼ k2p0 þ 4pn½Fpðkp� ; ks� Þ � a�jh¼0; ð42aÞ

k2s� ¼ k2s0 þ 4pn½Fsðkp� ; ks� Þ � b�jh¼0; ð42bÞ
where h ¼ 0 denotes the incident direction.

The propagation of a scalar wave through an inhomogeneous medium with distributed scatterers was

studied early by Foldy (1945) and the wave number of the coherent plane wave was given by
k�
k0

� �2

¼ 1þ 4pn
k20

f ðk0Þ; ð43Þ
where k� is the wave number of the coherent wave and k0 is that of the incident wave. f ðk0Þ is the isotropic
scattering amplitude of the potential scattered by a single inclusion embedded in a homogenous medium.

Lax (1952) modified Foldy’s treatment by introducing a correction parameter c0 (a measure of the ratio of
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the effective exciting field huei to the macroscopic average field hui) and extend to the anisotropic scattering
by replacing f ðk0Þ with the forward scattering amplitude f ðk0; 0Þ
k�
k0

� �2

¼ 1þ 4pn
k20

c0f ðk0; 0Þ: ð44Þ
Waterman and Truell (1961) provided an alternative formula based on the double plane wave theory, in

which the backward scattering amplitude f ðk0; pÞ was considered,
k�
k0

� �2

¼ 1

�
þ 2pn

k20
f ðk0; 0Þ

�2
� 2pn

k20
f ðk0; pÞ

� �2
; ð45Þ
By only retaining the chain-scattering (or neglecting the shuttle-scattering) in the multiple scattering pro-

cess, Twersky obtained (Ishimaru, 1978)
k� ¼ k0 þ
2pn
k0

f ðk0; 0Þ: ð46Þ
Moreover, based on the independent scattering approximation Gubernatis (1984) obtained
k2� ¼ k20 þ 4pnf ðk0; 0Þ: ð47Þ

A comparison among these equations can be made, and it is noted that Waterman and Truell’s equation

reduces to Foldy’s equation for the isotropic scattering where f ðk0; 0Þ ¼ f ðk0; pÞ, to Twersky’s equation

when the backward scattering amplitude is neglected, and to Gubernatis’s equation when the second rank

terms of the number density are neglected. In Eq. (42) the far-field scattered amplitude vectors of dis-

placement, Fpðkp� ; ks� Þ and Fsðkp� ; ks� Þ, are included, and the effective wave numbers are expressed in an

implicit form. In order to simplify the computation Fpðkp� ; ks� Þ and Fsðkp� ; ks� Þ can be approximated by
Fpðkp0; ks0Þ and Fsðkp0; ks0Þ for the case of weak scattering. Because Fpðkp0; ks0Þ and Fsðkp0; ks0Þ are, in general,
complex-valued and frequency-dependent even for the elastic interphase, the effective wave numbers of P
and S waves, kp� and ks� , are thus complex-valued and frequency-dependent. The real part of the complex-

valued wave number is related to the phase velocity and the imaginary part represents the attenuation of

waves
kp� ðxÞ ¼ krp� ðxÞ þ ikip� ðxÞ ¼ x=c�p þ ia�
p; ð48aÞ

ks� ðxÞ ¼ krs� ðxÞ þ ikis� ðxÞ ¼ x=c�s þ ia�
s ; ð48bÞ
where, c�p and c
�
s are the phase velocities, and a�

p and a�
s are the attenuation of P and S waves, respectively.

Further, the real and imaginary parts of the complex-valued wave number are not independent but con-

nected by the non-local Kramer–Kronig relations (Donnell et al., 1981)
kr�ðxÞ ¼ 2

p
p:v:

Z 1

0

x0ki�ðxÞ
x02 � x2

dx0; ð49aÞ

ki�ðxÞ ¼ � 2

p
p:v:

Z 1

0

xkr�ðx0Þ
x02 � x2

dx0; ð49bÞ
where ‘p.v.’ denotes the principal value integral. The complex-valued propagation constants mean a wave

propagating with attenuation. In other word, the effective or average waves propagating through an

inhomogeneous composite medium will be attenuated due to the multiple scattering among the inclusions.

On the other hand, waves propagating through a dissipative medium are of complex-valued wave numbers
too but due to the energy absorption. In the present case of the presence of the viscoelastic interphase, the

complex-valued wave numbers of the coherent waves result from both energy diffusion and energy
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absorption. The effective elastic moduli of the composites can be obtained from the effective wave number

by
Table

Materi

Mat

SiC

Al

From
l�ðxÞ ¼ lr�ðxÞ þ ili�ðxÞ ¼ l0

q�
q0

ks0
ks�

� �2

; ð50aÞ
k�ðxÞ ¼ kr�ðxÞ þ iki�ðxÞ ¼ ðk0 þ 2l0Þ
q�
q0

kp0
kp�

� �2

� 2l0

q�
q0

ks0
ks�

� �2

; ð50bÞ
where the effective density of the composites, q�, can be obtained straightforward from the volume average
q� ¼ ð1� c� c�cÞq0 þ cq1 þ c�cq2; ð51Þ
where �c ¼ 3ðh=aÞ þ 3ðh=aÞ2 þ ðh=aÞ3.
4. Numerical results and discussion

The effective properties of a SiC–Al composite material will be predicted in this section. The mechanical

properties of the constituents are given in Table 1. In order to examine the influence of the viscoelastic

interphase on the dynamic effective properties, for example, the effective phase velocities, the effective

attenuation and the effective elastic moduli, a thin homogeneous interphase between the inclusion and the
matrix is introduced. The standard linear solid model of a viscoelastic material is used to described the

mechanical behavior of the viscoelastic interphase. The isotropic relaxation functions and their corre-

sponding complex moduli are
l2ðtÞ ¼ l21 þ ðl20 � l21Þ expð�t=slÞ; ð52aÞ
lv2ðxÞ ¼ ixF ðl2ðtÞÞ ¼ ðl21 � il20xslÞ=ð1� ixslÞ; ð52bÞ
k2ðtÞ ¼ k21 þ ðk20 � k21Þ expð�t=skÞ; ð53aÞ
kv2ðxÞ ¼ ixF ðk2ðtÞÞ ¼ ðk21 � ik20xskÞ=ð1� ixskÞ; ð53bÞ
where l20 and k20 are the short-term (or initial) moduli, and l21 and k21 are the long-term (or final) moduli
of the viscoelastic interphase, respectively. sk and sl are the relaxation times. It is noted that the elastic

interphase can be recovered by letting k20 ¼ k21 and l20 ¼ l21 or sk ¼ sl ¼ 1. In this numerical example,

the initial moduli, l20 and k20, are assumed to be the average of the elastic moduli of the inclusion and the

matrix, respectively. Two relaxation times, i.e. sk ¼ sl ¼ 1:0E)4(s) and 4.0E)5(s) with l20=l21 ¼
k20=k21 ¼ 5 are considered. It should be pointed out that the choice of these material constants is mainly for
1

al constants of SiC and Al

erials k (GPa) l (GPa) q (kg/m3) cp (km/s) cs (km/s)

98.0 188.1 3181 12.21 7.69

57.5 26.5 2706 6.39 3.129

Shindo et al. (1995).
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the sake of demonstration. It can be seen in Fig. 3 that the viscous effects of such viscoelastic materials are

notable at the range of frequency 0:1 < ks0a < 5.

In Fig. 2, the predicted effective wave numbers ðkp� ; ks� Þ from Eqs. (45)–(47), namely, Waterman and

Truell’s, Twersky’s and Gubernatis’s equations, are compared. It can be seen that Twersky’s equation, in
which the backscattering amplitude is neglected, underestimates the phase velocities and the attenuation.

However, the deviation from the results obtained from Waterman and Truell’s equations decreases grad-

ually with the increasing frequency. This is because the back scattering amplitude, in general, becomes

smaller when the frequency increases. The results obtained from Gubernatis’s equation give a good

approximation to that obtained from Waterman and Truell’s equation at the volume concentration con-

sidered. But it can be predicted that the deviation will increase with the increasing volume concentration

because the second rank terms of the volume concentration are no longer insignificant. If Fpðkp� ; ks� Þ and
Fsðkp� ; ks� Þ are approximated by Fpðkp0; ks0Þ and Fsðkp0; ks0Þ, the results obtained from Eq. (42) are the same
with that obtained from Gubernatis’s equation. In addition, the numerical results obtained from the present

program based on Eq. (42) with Fpðkp� ; ks� Þ and Fsðkp� ; ks� Þ approximated by Fpðkp0; ks0Þ and Fsðkp0; ks0Þ are
the same with that obtained by Shindo et al. (1995). Hence the validity of the Fortran codes in the present

study for evaluating the effective wave numbers is verified.
Fig. 2. The effective wave numbers predicted by three equations.



Fig. 3. The frequency-dependent complex moduli of a viscoelastic interphase.

Fig. 4. The normalized effective wave numbers, attenuations and elastic moduli of the composite SiC–Al with an elastic or viscoelastic

interphase (s ¼ sk ¼ sl).
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The frequency-dependent complex moduli of the viscoelastic interphase are shown in Fig. 3. The
imaginary parts of the complex moduli are related to the viscosity of the material, which is restricted to
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a finite frequency range if the standard linear solid model is used. The viscoelastic interphase reduces to

the elastic interphase with the long-term modulus at a relatively low frequency, whereas to the elastic

interphase with the short-term modulus at a relatively high frequency. The predicted effective phase

velocities and attenuations are shown in Fig. 4(a) and (b). It is noted that the phase velocities decrease
but the attenuations increase for both P and S waves at a relatively low frequency due to the viscous

effect of the interphase. However, the viscosity effect of the interphase decreases gradually with the

increase of the frequency. The predicted effective muduli are shown in Fig. 4(c) and (d). It can be seen

that the viscosity of the interphase can affect the effective moduli significantly at a relatively low fre-

quency but the effect of the viscosity decreases gradually when the frequency increases. The viscous

effect of the interphase on the imaginary parts of complex-valued elastic moduli is similar with that on

the attenuation. From Fig. 4(b) and (c), it is can be seen that the attenuation tends to zero as the

frequency tends to zero for both elastic and viscoelastic interphases. For two kinds of interphases with
the same initial and final moduli but the different relaxation times, the deviation between them will

vanish at a relatively low and high frequency, and reach maximum at a specific moderate frequency.

This means that we can change the mechanical properties of composites at an interesting frequency

range through the design of the interphase. On the other hand, the initial and final moduli can affect the

mechanical properties of composites at the initial and final stages of loading. For example, if

k21 ¼ l21 ¼ 0, the particle-reinforced composite behaves in the final stage as a porous material after

sufficient relaxation of the interphase. It should be also noted that the dissipative nature of the inter-

phase and the multiple scattering effects of the distributed inclusions are both contributed to the
attenuation of waves. But the mechanisms of the attenuation in these two cases are different distinc-

tively. The dissipative nature results in the energy absorption but the multiple scattering effect only

results in energy diffusion. The numerical results in the present study show that the viscous effect of the

interphase dominates at a relatively low frequency but the multiple scattering effect dominates gradually

with the increase of the frequency.
5. Concluding remarks

The forward scattering amplitudes are of importance in predicting the effective properties of a composite
material. And the backward scattering amplitude is less important especially in a relative high frequency.

The forward scattering amplitudes are related closely to the mechanical behavior of the interphase between

the matrix and the inclusion, thus the interphase can affect the effective properties of the composite rein-

forced by the distributed inclusions significantly. This means that the desired effective properties of a

composite can be obtained by an appropriate design of the interphase. An interphase of viscoelastic

properties can be introduced to provide the relaxation and damping characteristics to an otherwise elastic

brittle composite. The numerical results show that the viscous effects of the interphase can depress the

effective phase velocities and the effective elastic moduli, but boost the effective attenuation. The initial and
the final elastic moduli of the interphase can change the mechanical properties of the composite at the initial

and the final stages of loading. And the mechanical properties of the composite at a specific interested

frequency range can be changed by the aborative selection of a specific relaxation time. Moreover, both of

the dissipative nature of the interphase and the multiple scattering effect of the distributed inclusions are

contributed to the attenuation of the coherent waves. But the mechanisms of the attenuation in these two

cases are different distinctively. The dissipative nature of the interphase results in the energy absorption but

the multiple scattering effect results in the energy diffusion only. Furthermore, the viscous effect of the

interphase dominates at a relatively low frequency and the multiple scattering effect dominates at a
relatively high frequency.
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