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Abstract

The effects of viscoelastic behavior of the interphase on the dynamic effective properties of composite materials
reinforced by the distributed coated spherical inclusions are studied in this paper. The effective wave numbers of
composites are predicted from the coherent plane wave equation which is related to the forward scattering amplitudes
of an individual inclusion. A thin homogeneous viscoelastic interphase between the inclusion and the matrix is used to
model the more realistic bonding state between them. Because the forward scattering amplitudes are closely related to
the interphase, the interphase thus can affect the effective properties of composites significantly. The numerical simu-
lation is given for SiC—Al composites and it is shown that the effective wave numbers and the effective elastic moduli of
the composites are affected by the viscosity of the interphase noticeably. The attenuation of the effective waves is related
to both the multiple scattering amongst reinforced particles and the material dissipation of the viscoelastic interphase.
However, the dissipation effect of the interphase dominates in a range of relatively low frequency, whereas the effect of
multiple scattering dominates in a range of relatively high frequency.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The determination of the effective propagation constants of the waves propagating through composite
materials has been a subject which attracted a considerable attention in the past several decades (e.g. Foldy,
1945; Lax, 1952; Varadan et al., 1985; Data et al., 1988; Shindo et al., 1995; Kanaun, 2000). Foldy (1945)
studied early the effective wave number of the scalar wave propagating through the inhomogeneous
medium with distributed particles based on the multiple scattering theory. In this theory a set of equations
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in hierarchy, each containing more statistical information than those preceding, is involved. Truncating
these equations to obtain an approximate solution usually resorts to the well-known ‘“‘quasi-crystalline
approximation” proposed by Lax (1952). Later, Bose and Mal (1973) and Varadan et al. (1985) extended
the multiple scattering theory of the scalar wave to the elastic waves and enhanced the theory by intro-
ducing the more realistic pair-correlation function to describe the interaction between two particles accu-
rately. On the other hand, the interaction amongst particles can be described approximately by assuming
that each particle is embedied in an effective medium, which is usually called as the effective medium
approach and was employed by Berryman (1980), Sabina and Willis (1988), Yang and Mal (1994), Kanaun
(2000) and others. The multiple scattering theory and the effective medium approach are based on different
assumptions to simplify calculations, and thus, generally speaking, will give different results when applied
to a given composite medium.

In the composites reinforced by fibers or particles, it is often the case that there is an imperfect interface
between the matrix and the fiber or particle induced by processing conditions. The nondestructive char-
acterizing of interface properties by ultrasonic waves is crucial for the safety service of structure material.
Consequently, it is desirable to relate the effective propagation constants (the phase velocity and the
attenuation) to the properties of the imperfect interface. Mal and Bose (1974) studied early the imperfect
interface where only the tangential displacement jumps were considered. This means the slip may occur at
the interface if a load is applied on it. Data et al. (1988) studied the imperfect interface that both tangential
and normal displacements jumps exist. In both studies above-mentioned it is assumed that the tractions are
continuous across the interface. It may be noticed that these approximate boundary conditions ignore the
inertial and the curvature effects. The imperfect interface with both displacement and stress jumps, as an
improved model, was studied by Olsson et al. (1990) and Hashin (2002). Further, the graded interfacial
layer in the fiber- or particle-reinforced composites was discussed by Shindo et al. (1995) and Sato and
Shindo (2001).

In the present work the interphase is modeled as a thin shell with finite thickness and is assumed to be
viscoelastic. An interphase of such nature might be introduced to provide relaxation and damping char-
acteristics to an otherwise elastic brittle composite. The effects of viscoelastic interphase on the effective
properties of composites were studied by Hashin (1991) based on the correspondence principle. In his
investigation, the Maxwell model of viscoelastic material is used. The effects of viscoelastic matrix and
viscoelastic particle were studied recently by Biwa et al. (2002) based on the independent scattering/
absorption analysis, but the complex moduli of the viscoelastic material were approximated as frequency-
independent constants. It is our purpose to discuss the effects of the viscoelastic interphase on the effective
propagation constants and the dynamic effective moduli of such composites. And the more general model
for a viscoelastic material, i.e. standard solid model, will be used in our study. The outline of the paper is as
follows: In Section 2, the scattering problem of a single inclusion embedded in an elastic matrix with the
viscoelastic interphase separating the inclusion with the matrix is studied and the forward scattering
amplitudes are formulated. In Section 3, an equation to predict the effective wave number by using the
forward scattering amplitudes of displacement vector is formulated. And some other equations to predict
the effective wave number by using the forward scattering amplitudes of wave potential are discussed. In
Section 4, the effects of the viscoelastic interphase on the effective properties of composites are studied and
the numerical calculations are carried out for SiC—Al composites. Finally, some conclusions are given in
Section 5.

2. Scattered waves by a coated spherical particle embedded in a elastic matrix

Consider a spherical inclusion of radius a embedded in an elastic matrix. The /am’e constants and the
mass densities of the inclusion and the matrix are denoted by (4, iy, p;) and (Ao, 1y, py), respectively. We
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assume that the inclusion is separated from the matrix by a thin viscoelastic interphase of uniform thickness
h. The frequency-dependent lam’e constants and the mass densities of the viscoelastic interphase are
denoted by (4;(w), u5(w), p,). The geometry is depicted in Fig. 1, where (x,y,z) is the right-handed
Cartesian coordinate system with the origin at the center of the spherical inclusion and (r,6, ¢) is the
corresponding spherical polar coordinate. The time harmonic plane longitudinal and shear waves, P and S
waves, with circular frequency w are assumed to propagate through the matrix. Let the z-axis is the
propagation direction of the incident waves. Then, the incident waves may be expressed by the displace-
ment vector

ui _ aei(kposzt) + bei(ksoszt)7 (1)

where a = ae, and b = be, are the polarization vectors of incident P and S waves, respectively. e, and e, are
unit coordinate vectors. k, and k, are the wave numbers of the incident P and § waves, respectively. When
the incident waves impinge the coated elastic inclusion, the scattered waves outside the coated inclusion, the
refracted waves inside the inclusion and the transmitted waves in the interphase are induced. It is no doubt
that the existence of the interphase can change the scattered waves and thus affect the effective waves
propagating through the composites.

In order to evaluate the scattered wave field in the matrix, it is necessary to take into account the
transmitted waves in the interphase and the continuous conditions of displacements and tractions across
the interfaces at both sides of the interphase. It is noted that the wave numbers of waves in the elastic
inclusion and matrix are real-valued and the wave numbers of waves propagating through the interphase
are complex-valued due to the frequency-dependent complex moduli of the viscoelastic interphase. The
complex-value wave numbers mean the attenuation of waves, in other word, the energy carried by waves
is partly absorbed by the viscoelastic interphase. This mechanism of the viscoelastic interphase is expected
to improve the mechanical properties of brittle composites. The constitutive equations of an isotropic
viscoelastic material can be expressed generally in the Stieltjes integral form

5(t) = [ " 260yt — 1) de, (2a)
Ukk(t) = /t 3K(T>ékk(l — ‘L') d’L'. (2b)
Az

/ ﬂ,zv(a))"u;(a))’ p2

Aos o> Py
..... >y

Aps My Py

X

Fig. 1. A coated spherical inclusion embedded in an elastic matrix.
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In the harmonic cases, it leads to
5;(0) = 2G" (w)ey(w), (3a)

Tu(®) = 3K (0) e (o), (3b)

where ¢;;, 6y, ej;, 5;; are the strain, the stress, the deviatoric strain and the deviatoric stress, respectively. And
&, 0, €y, 5; are their corresponding Fourier transformations, respectively, i.e.f(w) = F(f(¢)). The
shear and bulk moduli, G*(w) and K*(w), are related to the shear and bulk relaxation functions, G(¢) and
K(1), by

G'(w) = iwF(G(1)), (4a)
K’ (w) = ioF (K(2)). (4b)
The equations of wave motion in a homogeneous elastic or viscoelastic medium are expressed as

k,2VV -u—k?V x Vxut+u=0, (5)

where u(x, y,z,t) is the time harmonic displacement vector. For convenience, the time harmonic factor e~
is omitted in the following discussion but understood. k, = w/+/(4 + 2u)/p and k, = w/+/ 1/ p are the wave
numbers (real- or complex-value) of the longitudinal and the shear waves, respectively. V is the gradient
operator. It is known that the general form of the solution of Eq. (5) can be expressed as

u=Veo+V x (¥rie,+V x V x (IIr)e,, (6)
where the scalar potential @, ¥ and II are the solutions of the scalar Helmholtz equation
(V2 + %) (@, .11) = 0, (7)

(where V2 is the Laplacian operator) and can be expressed in a series form

o0

(@,%,11) =) Z ConZ! (kr) P (cos )™ (g =1 or 3), (8)
n=0 m=0
where C,, is the expansion coefficient. P (cos 0) is the associated Legendre function and the symbol Z?(kr)
stands for the spherical Bessel function j,(kr) for ¢ = 1 and the spherical Hankel function 4" (k) for ¢ = 3.
In order to meet the radial conditions at infinity and to keep finite values of the displacements at the center
of the inclusion, the potentials of the scattered, transmitted and refracted waves can be expressed as

o0

Z ZAW D (k,r)P" (cos 0)e™?, (9a)
n=0 m=0
o En )

v = Z ZBfnnhfln(ksr)P:’(cos 0)e™?, (9b)
n=0 m=0
Z C hV (k)P (cos 0)e™?, (9¢)
n=0 m=0
o *n =

@ =3 N[, (kr) P (cos 0) + AL, bV (k)P (cos 0)]e™, (10a)
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00 +n
v =3 S (B (k)P (cos 0) + Bl b (k) P (cos 0)]e, (10b)

mn-n
n=0 m=0

oo *n
I'="3 [C,jn(kr)P}'(c0s 0) + C;,, b1 (kyr) Py (cos 0) e, (10c)

n=0 m=0

o) +n
=>4, ju(k,r)P) (cos O)e™?, (11a)

n=0 m=0

i Zanjn (k)P (cos 0)e™?, (11b)

n=0 m=0
oo *n i

= > Crunlkr)By (cos O)e™, (11c)
n=0 m=0

where 4%, B, C*, 4., B, and C, (x = s,r,t for the scattered, refracted and transmitted waves, respectively)
are the expansion coefficients to be determined from the boundary conditions. The boundary conditions,
namely, displacements and tractions are continuous across the interfaces at both sides of the interphase,
may be written as

up(a) = up(a), ugla+h)+uy(a+h)=ug(a+h) (B=r0¢), (12a)

ty(a) = ty(a), ty(a+h)+t5(a+h)=1t(a+h) (B=r0,0). (12b)
where the tractions vector can be obtained by

t=o0"n, (13)

6 =AV-wl+pu(Vu+uV). (14)

In Eq. (13) and (14), n is the outward normal vector of the interfaces and I is the second-rank identity
tensor. In order to determine the unknown expansion constants, it is convenient to extend the incident
plane waves in terms of the spherical wave functions too

(Di _ 1kp0z — a
1k ik,

0

oo *n
Z Z )" 8o jin(kpor) P (cos 0)e™?
n=0

m=0

an” kyor)P;(cos 0)e e"?. (15a)

Il
HM*

b 2 +1 n—1 . imd
Z Z ol . St + 1(n 4 1)8, _Ji""j, (kor) P (cos 0)e™

= Z B ju(kor)P"(cos 0)e™?, (15b)
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Hi o b >, 2n+1 S ) n—1 . k pn 0 im¢
= — ‘ Z Z 2—[ m,1 *I’l(l’l + ) m,fl]1 Jn( sOr) n (COS )C

= Z C! ju(ksor)P"(cos 0)e™?. (15¢)

The solution of Eq. (12) can be expressed formally
( N BS

s t 12 t r r
mn? = mn? meAmn’ an’ Cmn’Amn’ an7 Cmn’Amn’ B

mn?

Y =T 4 c oy (16)

where T is the so-called 7-matrix which is dependent upon the properties of the matrix, the inclusion and
the interphase between them. Furthermore, with the introduction of the scattering operator T, the scat-
tered wave can be related to the incident wave by

v =Tu. (17)
After applying the asymptotic expression of the radial function A" (kr)

i
mn’an7

1 . 1
hg[l)(kr) ~ k_el[kr*%(rH»l)TE] +o0 <_> when r — 0, (18)
r r

the displacement of scattered wave in the far-field can be expressed asymptotically

1 1kp0r S s 71 (n+1)7 pm 1m¢ 1 _ E(97 ¢) ikpor 1
Uy ; ; 4} e TP (cos 0)e™ + o S = ¢ +o =) (19a)
up 1kvor zx: Z le—l— (n+1)m m (COS 9) +C iPm (COS H) im¢ +o l
n=0 m=0 B kso sin 6" "do " r
_ F0(97 }) ekor 4 o 1 (19b)
r r)’
~ — =gl io: Z B iP’" (cos 0) + —C* P (cos ) | e 3t Dmeimd 4 !
n=0 m=0 kYO do-" ng " r
_ F()(ea d)) eikxur 4 O(l) , (190)
r r

where F.(0, ¢), Fy(0,$) and F,(0, ¢) are called the far-field scattered amplitudes of displacement compo-
nents. Furthermore, we define F, = F,.(0, ¢)e, and F, = Fy(0, p)ey + F;(0, ¢)e, (e,, ey and ey is unit polar
coordinate vectors) as the far-field scattered amplitude vectors for the scattered longitudinal and shear
waves, respectively. It is noted that the far-field scattered amplitudes are dependent on the azimuth angles
(0, ¢). The far-field scattered amplitudes at two specific azimuthal angles, 6 = 0 and 0 = =, are of special
interest, and are called the forward and the backward scattering amplitudes, respectively.

o0

F(0,9) =) ()4, (20a)

F()(O, ¢) — i (_2i)” |:n(n+ 1)Bain i +k1 B —1¢ ; (20b)
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Fy(0,9) = 1(_21) [(n+1)Ce” +C e, (20c)
n=1
F(n,¢) =3 {4, (21a)
n=0
= —i"[n(n+1) : 1 N
Fy(m, ¢) = — | B e+ — B e, 21b
9( ¢) ; |: ksO In ksO In ( )
00 7ln+1 ) )
Fy(n, ¢) = Z 5 [n(n+1)C e+ C* | e (21c)

3. Dynamic effective properties of the particle-reinforced composites

We now consider a composite material with N inclusions randomly distributed in the matrix. If their
positions of these inclusions, denoted by the random variables (ry,r,, ... ,ry), are given, we shall say that we
have a particular configuration of these scatterers. The joint probabilities distribution, denoted by
p(ry, 1, ... ry), represents the probability of finding these scatterers in the above configuration. In light of
the chain rule of the conditional probabilities, the distribution function can be written as

p(ry 1y, o ey) = p(e)p(ry,Tay . X iy, EN|E) = p(r)p(ry, e, .. o eyr), (22)

where the vertical lines in the arguments stands for the conditional probability distribution with the
scatterer positioned at r; hold fixed. Symbol ““”” means the absence of one variable. Due to the indistin-
guishability of inclusions, the distribution function p(r;,r,,...,ry) is symmetric in its arguments. If the
composite medium is statistically uniform within a volume 7, then, the position of each inclusion is equally
probable within the volume V', namely, its distribution is uniform with density

1
p(r,—):; (i=1,2,3,...,N). (23)
The probability of finding a particular inclusion in the micro volume element dV; at r; is

p(ri)dV}:dV,-/-~-/dV1-~-/--~dVNp(r1,...7rN). (24)

Since each of the N inclusions has equal likelihood for occupying dV;, the number density n(r;) of inclusions
at r; is then given by

n(r;) = Np(r;), (25)

and is related to the volume concentration ¢ by n = 3¢/(4na®). The configurational average of a random
function f(r;ry,...,ry) is defined by

U‘(r;rl,...,rN)):/~~~/dV1-"dV]\,p(rl,...,1‘,\,)f(1';r1,...,r,\,)7 (26)

and the partial configurational average with one inclusion held fixed is defined by
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where the first coordinate r indicates the field point of evaluation, and the (r;,...,ry) indicates the
dependence of the random function on the specific configuration chosen.
The total field at any point outside all inclusions can be given in the multiple scattering form

u(r;ry,r,...,ry) =u(r) + XN:TS(rk)ui(r) + XN:TS(I‘M) ZN: T (r)u'(r) + - -, (28)

k=1 k#m

where the single summation denotes the primary scattered terms, the double summation the secondary
terms and so on. The primary scattering is due to the incident waves alone, and the second scattering
represents the rescattering of the primary scattered waves, etc. The multiple scattering theory takes into
account the interaction among the distributed inclusions accurately. However, it is difficulty to deal with in
order to predict the effective properties. Here, we use the effective field approximation to describe
approximately the interaction among the distributed inclusions. In this approximation it is assumed that
each inclusion be excited by an effective exciting field u® Then Eq. (28) can be approximately replaced by

N
u(r;r;,r,...,ry) = ui(r) + Z'I‘S(}’k)lle(l‘|l'k;l‘l7 Sy, (29)
=1
After performing configurational average over Eq. (29), we obtain
(u(r;ry, ... ry)) =u'(r) + / n(re) T (re) (Ul (rfrgs g, .. oy ey)) d Ve (30)
The quantity (u®(r|ry;ry,... ..., ry)) represents the exciting field acting on the kth scatterer averaged over
all possible configurations of the other scatterers. Therefore it is in fact the counterpart of the averaged
total field with one inclusion absent. The averaged total field with N inclusions involved, (u(r;r,... ry)),

would differ from the averaged total field with one less inclusion involved only by terms of order 1/N. As
the number of inclusions increases, we may make the self-consistent approximation

(u(rresry, .. oo ry)) = (u(rs e, ..o ry)). (31)

This approximation was proposed first by Foldy (1945) and later modified by Lax (1952) by introducing a
correction parameter. Then, we obtain the integral equation.

(u(r;ry,...,ry)) = u'(r) +/n(rk)TS(rk)<u(r;r1,...,rN))de

=u'(r) —|—/n(rk)GTY(rk)de(u(r;rl,...,rN)>. (32)
This equation can be rewritten in a compact form
(u) = u’ + nGT (u), (33)

where T° is fractionalized by T* = GT and T is still called the scattering operator. G is the Green function
tensor of the homogeneous and isotropic host medium, which satisfies

(%0 + 15)V(V - G) + 1y V*G — po’G +I5(r —1') = 0, (34)
or in an operator form
L'G+1=0, (35)

where the operator LY is written as

LK) = o + o)kl + (oh® — poes?)3,. (36)
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For a homogeneous and isotropic medium, the equation of motion is expressed as

L'u =0, (37)
and the dispersion relation can be obtained from
u'L’u = 0. (38)
For the longitudinal and shear waves, Eq. (38) leads to
2
2 Po®
0 )»0 + 2:“07 (3921)
Py’
ko = ; (39b)
Ho

where k, and &y are the wave numbers of P and S waves propagating through the homogeneous medium,
respectively. After performing wave operator L on both sides of Eq. (33), we obtain the dispersion rela-
tions of the effective longitudinal and shear waves propagating through the composite material

k;* = kio + (40 + 2#0)71”72-01'61]7 (40a)

ke = ko + 1 nTbiby, (40D)

where k, and k- are the effective wave numbers of P and S waves through the composite material,
respectively. a and b are polarization vectors of P and S waves, respectively. It was proved by Devaney
(1980) that the scattering operator T of a single inclusion bears a simple relation to the far-field scattering
amplitude vectors of the waves scattered by the inclusion

— 4mp,0?
Tyaia; = kzo [Fy (ki) - 2], (412)
'p0
; 4np,w?
T,-jbibj = kzo [FS(kp*a kS*’) : b]|0:07 (41b)

where F,(k,, k) and F,(k,, k,-) are the far-field scattering amplitude vectors of P and § waves, respectively.
By inserting Eq. (41) into Eq. (40), we obtain the desired dispersion relations of the averaged waves in term
of the far-field scattering amplitude vectors of a single inclusion.

k;* = kjo +4nn[F,(ky, ks ) - a]|,_, (42a)

ksz* = kszo + dnn[Fy(ky, ks) - bl oy, (42b)

where 6 = 0 denotes the incident direction.
The propagation of a scalar wave through an inhomogeneous medium with distributed scatterers was
studied early by Foldy (1945) and the wave number of the coherent plane wave was given by

dnn

(%)2 = 1+ k), 43)

where k. is the wave number of the coherent wave and kj is that of the incident wave. f (k) is the isotropic
scattering amplitude of the potential scattered by a single inclusion embedded in a homogenous medium.
Lax (1952) modified Foldy’s treatment by introducing a correction parameter ¢’ (a measure of the ratio of
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the effective exciting field (u®) to the macroscopic average field (u)) and extend to the anisotropic scattering
by replacing f(ky) with the forward scattering amplitude f(ko,0)

k\° 4rn
) =14 Sk, 0). (44)
ko k2

Waterman and Truell (1961) provided an alternative formula based on the double plane wave theory, in
which the backward scattering amplitude f'(ko, 7) was considered,

By only retaining the chain-scattering (or neglecting the shuttle-scattering) in the multiple scattering pro-
cess, Twersky obtained (Ishimaru, 1978)

2
k. = ko + =/ (k. 0). (46)
0
Moreover, based on the independent scattering approximation Gubernatis (1984) obtained
k2 = k2 + 4nnf (k, 0). (47)

A comparison among these equations can be made, and it is noted that Waterman and Truell’s equation
reduces to Foldy’s equation for the isotropic scattering where f'(ky,0) = f(ko, ), to Twersky’s equation
when the backward scattering amplitude is neglected, and to Gubernatis’s equation when the second rank
terms of the number density are neglected. In Eq. (42) the far-field scattered amplitude vectors of dis-
placement, F,(k,,ks) and F,(k,, k), are included, and the effective wave numbers are expressed in an
implicit form. In order to simplify the computation F,(k,, k) and F,(k, k) can be approximated by
F,(kp, k) and Fy(ky, ky) for the case of weak scattering. Because F,(k,, ky) and F,(k,, ky) are, in general,
complex-valued and frequency-dependent even for the elastic interphase, the effective wave numbers of P
and S waves, k,- and k-, are thus complex-valued and frequency-dependent. The real part of the complex-
valued wave number is related to the phase velocity and the imaginary part represents the attenuation of
waves

kyp (@) = K (@) + ik, (0) = o/, + i, (48a)

ke (@) = K. (o) + ik (0) = o/t + 1o, (48b)

where, ¢, and ¢] are the phase velocities, and o, and «; are the attenuation of P and S waves, respectively.
Further, the real and imaginary parts of the complex-valued wave number are not independent but con-
nected by the non-local Kramer—Kronig relations (Donnell et al., 1981)

2 * o'kl (w)
"(w) ==p.v. —= = dao’ 49:
ki (w) 7Tpv/o o o do/, (49a)
; 2 * ok’ (o)
kl(w) = —=p.v. — = do’ 49
)= —pv. [ 2 o (49)

where ‘p.v.” denotes the principal value integral. The complex-valued propagation constants mean a wave
propagating with attenuation. In other word, the effective or average waves propagating through an
inhomogeneous composite medium will be attenuated due to the multiple scattering among the inclusions.
On the other hand, waves propagating through a dissipative medium are of complex-valued wave numbers
too but due to the energy absorption. In the present case of the presence of the viscoelastic interphase, the
complex-valued wave numbers of the coherent waves result from both energy diffusion and energy
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absorption. The effective elastic moduli of the composites can be obtained from the effective wave number
by

. . (ko
() = sco) it (o) = (1) (50a)
Po \ As*
o < i P« pr 2 P« ko ?
}”*((’O) = A*(w) + 1/“*<w) = (AO + zlu()) —\ 7 - 2#0_ ) (SOb)
Po \ Ky Po \ kg

where the effective density of the composites, p,, can be obtained straightforward from the volume average

p. = (1 —c—cc)py + cp; + ccps, (51)
where ¢ = 3(h/a) + 3(h/a)* + (h/a)’.

4. Numerical results and discussion

The effective properties of a SiC—Al composite material will be predicted in this section. The mechanical
properties of the constituents are given in Table 1. In order to examine the influence of the viscoelastic
interphase on the dynamic effective properties, for example, the effective phase velocities, the effective
attenuation and the effective elastic moduli, a thin homogeneous interphase between the inclusion and the
matrix is introduced. The standard linear solid model of a viscoelastic material is used to described the
mechanical behavior of the viscoelastic interphase. The isotropic relaxation functions and their corre-
sponding complex moduli are

1o(1) = pay + (pa — Ha1) exp(—1/7,), (52a)
1) = i0F (1)) = (1 — ippor,) /(1 = ioT,), (52b)
Ao(t) = a1 + (Ao — Aar) exp(—1/73), (53a)
(w) =i0F (7(1) = (A — idpor;) /(1 — o), (53b)

where p,, and 1, are the short-term (or initial) moduli, and u,; and 4,; are the long-term (or final) moduli
of the viscoelastic interphase, respectively. 7, and 7, are the relaxation times. It is noted that the elastic
interphase can be recovered by letting /) = 4y, and pyy = p,; or 7, = 1, = co. In this numerical example,
the initial moduli, u,, and 4,9, are assumed to be the average of the elastic moduli of the inclusion and the
matrix, respectively. Two relaxation times, i.e. 7, =1, = 1.0E-4(s) and 4.0E-5(s) with /1, =
Ja20/721 = 5 are considered. It should be pointed out that the choice of these material constants is mainly for

Table 1

Material constants of SiC and Al
Materials 2 (GPa) u (GPa) p (kg/m?) ¢, (km/s) ¢, (km/s)
SiC 98.0 188.1 3181 12.21 7.69
Al 57.5 26.5 2706 6.39 3.129

From Shindo et al. (1995).
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the sake of demonstration. It can be seen in Fig. 3 that the viscous effects of such viscoelastic materials are
notable at the range of frequency 0.1 < kgpa < 5.

In Fig. 2, the predicted effective wave numbers (k,, k) from Eqs. (45)—(47), namely, Waterman and
Truell’s, Twersky’s and Gubernatis’s equations, are compared. It can be seen that Twersky’s equation, in
which the backscattering amplitude is neglected, underestimates the phase velocities and the attenuation.
However, the deviation from the results obtained from Waterman and Truell’s equations decreases grad-
ually with the increasing frequency. This is because the back scattering amplitude, in general, becomes
smaller when the frequency increases. The results obtained from Gubernatis’s equation give a good
approximation to that obtained from Waterman and Truell’s equation at the volume concentration con-
sidered. But it can be predicted that the deviation will increase with the increasing volume concentration
because the second rank terms of the volume concentration are no longer insignificant. If F,(k,, k,-) and
F,(k, k) are approximated by F,(k,, kw) and F,(k,, k), the results obtained from Eq. (42) are the same
with that obtained from Gubernatis’s equation. In addition, the numerical results obtained from the present
program based on Eq. (42) with F,(k,, k,-) and F,(k,, k) approximated by F,(k,, k) and F,(k,, ky) are
the same with that obtained by Shindo et al. (1995). Hence the validity of the Fortran codes in the present
study for evaluating the effective wave numbers is verified.
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Fig. 2. The effective wave numbers predicted by three equations.
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Fig. 4. The normalized effective wave numbers, attenuations and elastic moduli of the composite SiC—Al with an elastic or viscoelastic

interphase (1 = 1, = 7,).

The frequency-dependent complex moduli of the viscoelastic interphase are shown in Fig. 3. The
imaginary parts of the complex moduli are related to the viscosity of the material, which is restricted to
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a finite frequency range if the standard linear solid model is used. The viscoelastic interphase reduces to
the elastic interphase with the long-term modulus at a relatively low frequency, whereas to the elastic
interphase with the short-term modulus at a relatively high frequency. The predicted effective phase
velocities and attenuations are shown in Fig. 4(a) and (b). It is noted that the phase velocities decrease
but the attenuations increase for both P and S waves at a relatively low frequency due to the viscous
effect of the interphase. However, the viscosity effect of the interphase decreases gradually with the
increase of the frequency. The predicted effective muduli are shown in Fig. 4(c) and (d). It can be seen
that the viscosity of the interphase can affect the effective moduli significantly at a relatively low fre-
quency but the effect of the viscosity decreases gradually when the frequency increases. The viscous
effect of the interphase on the imaginary parts of complex-valued elastic moduli is similar with that on
the attenuation. From Fig. 4(b) and (c), it is can be seen that the attenuation tends to zero as the
frequency tends to zero for both elastic and viscoelastic interphases. For two kinds of interphases with
the same initial and final moduli but the different relaxation times, the deviation between them will
vanish at a relatively low and high frequency, and reach maximum at a specific moderate frequency.
This means that we can change the mechanical properties of composites at an interesting frequency
range through the design of the interphase. On the other hand, the initial and final moduli can affect the
mechanical properties of composites at the initial and final stages of loading. For example, if
A =ty =0, the particle-reinforced composite behaves in the final stage as a porous material after
sufficient relaxation of the interphase. It should be also noted that the dissipative nature of the inter-
phase and the multiple scattering effects of the distributed inclusions are both contributed to the
attenuation of waves. But the mechanisms of the attenuation in these two cases are different distinc-
tively. The dissipative nature results in the energy absorption but the multiple scattering effect only
results in energy diffusion. The numerical results in the present study show that the viscous effect of the
interphase dominates at a relatively low frequency but the multiple scattering effect dominates gradually
with the increase of the frequency.

5. Concluding remarks

The forward scattering amplitudes are of importance in predicting the effective properties of a composite
material. And the backward scattering amplitude is less important especially in a relative high frequency.
The forward scattering amplitudes are related closely to the mechanical behavior of the interphase between
the matrix and the inclusion, thus the interphase can affect the effective properties of the composite rein-
forced by the distributed inclusions significantly. This means that the desired effective properties of a
composite can be obtained by an appropriate design of the interphase. An interphase of viscoelastic
properties can be introduced to provide the relaxation and damping characteristics to an otherwise elastic
brittle composite. The numerical results show that the viscous effects of the interphase can depress the
effective phase velocities and the effective elastic moduli, but boost the effective attenuation. The initial and
the final elastic moduli of the interphase can change the mechanical properties of the composite at the initial
and the final stages of loading. And the mechanical properties of the composite at a specific interested
frequency range can be changed by the aborative selection of a specific relaxation time. Moreover, both of
the dissipative nature of the interphase and the multiple scattering effect of the distributed inclusions are
contributed to the attenuation of the coherent waves. But the mechanisms of the attenuation in these two
cases are different distinctively. The dissipative nature of the interphase results in the energy absorption but
the multiple scattering effect results in the energy diffusion only. Furthermore, the viscous effect of the
interphase dominates at a relatively low frequency and the multiple scattering effect dominates at a
relatively high frequency.
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